Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The route to chaos in routing games: When is Price of Anarchy too optimistic? (1906.02486v2)

Published 6 Jun 2019 in cs.GT, econ.GN, math.DS, nlin.CD, physics.soc-ph, and q-fin.EC

Abstract: Routing games are amongst the most studied classes of games. Their two most well-known properties are that learning dynamics converge to equilibria and that all equilibria are approximately optimal. In this work, we perform a stress test for these classic results by studying the ubiquitous dynamics, Multiplicative Weights Update, in different classes of congestion games, uncovering intricate non-equilibrium phenomena. As the system demand increases, the learning dynamics go through period-doubling bifurcations, leading to instabilities, chaos and large inefficiencies even in the simplest case of non-atomic routing games with two paths of linear cost where the Price of Anarchy is equal to one. Starting with this simple class, we show that every system has a carrying capacity, above which it becomes unstable. If the equilibrium flow is a symmetric $50-50\%$ split, the system exhibits one period-doubling bifurcation. A single periodic attractor of period two replaces the attracting fixed point. Although the Price of Anarchy is equal to one, in the large population limit the time-average social cost for all but a zero measure set of initial conditions converges to its worst possible value. For asymmetric equilibrium flows, increasing the demand eventually forces the system into Li-Yorke chaos with positive topological entropy and periodic orbits of all possible periods. Remarkably, in all non-equilibrating regimes, the time-average flows on the paths converge exactly to the equilibrium flows, a property akin to no-regret learning in zero-sum games. These results are robust. We extend them to routing games with arbitrarily many strategies, polynomial cost functions, non-atomic as well as atomic routing games and heteregenous users. Our results are also applicable to any sequence of shrinking learning rates, e.g., $1/\sqrt{T}$, by allowing for a dynamically increasing population size.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.