Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Occluded Face Recognition Using Low-rank Regression with Generalized Gradient Direction (1906.02429v1)

Published 6 Jun 2019 in eess.IV, cs.CV, cs.NA, and math.NA

Abstract: In this paper, a very effective method to solve the contiguous face occlusion recognition problem is proposed. It utilizes the robust image gradient direction features together with a variety of mapping functions and adopts a hierarchical sparse and low-rank regression model. This model unites the sparse representation in dictionary learning and the low-rank representation on the error term that is usually messy in the gradient domain. We call it the "weak low-rankness" optimization problem, which can be efficiently solved by the framework of Alternating Direction Method of Multipliers (ADMM). The optimum of the error term has a similar weak low-rank structure as the reference error map and the recognition performance can be enhanced by leaps and bounds using weak low-rankness optimization. Extensive experiments are conducted on real-world disguise / occlusion data and synthesized contiguous occlusion data. These experiments show that the proposed gradient direction-based hierarchical adaptive sparse and low-rank (GD-HASLR) algorithm has the best performance compared to state-of-the-art methods, including popular convolutional neural network-based methods.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube