Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Improving RetinaNet for CT Lesion Detection with Dense Masks from Weak RECIST Labels (1906.02283v1)

Published 5 Jun 2019 in eess.IV, cs.CV, and cs.LG

Abstract: Accurate, automated lesion detection in Computed Tomography (CT) is an important yet challenging task due to the large variation of lesion types, sizes, locations and appearances. Recent work on CT lesion detection employs two-stage region proposal based methods trained with centroid or bounding-box annotations. We propose a highly accurate and efficient one-stage lesion detector, by re-designing a RetinaNet to meet the particular challenges in medical imaging. Specifically, we optimize the anchor configurations using a differential evolution search algorithm. For training, we leverage the response evaluation criteria in solid tumors (RECIST) annotation which are measured in clinical routine. We incorporate dense masks from weak RECIST labels, obtained automatically using GrabCut, into the training objective, which in combination with other advancements yields new state-of-the-art performance. We evaluate our method on the public DeepLesion benchmark, consisting of 32,735 lesions across the body. Our one-stage detector achieves a sensitivity of 90.77% at 4 false positives per image, significantly outperforming the best reported methods by over 5%.

Citations (103)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.