Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Physics Enhanced Data-Driven Models with Variational Gaussian Processes (1906.02160v2)

Published 5 Jun 2019 in cs.LG, cs.RO, physics.comp-ph, and stat.ML

Abstract: Centuries of development in natural sciences and mathematical modeling provide valuable domain expert knowledge that has yet to be explored for the development of machine learning models. When modeling complex physical systems, both domain knowledge and data provide necessary information about the system. In this paper, we present a data-driven model that takes advantage of partial domain knowledge in order to improve generalization and interpretability. The presented approach, which we call EVGP (Explicit Variational GaussianProcess), has the following advantages: 1) using available domain knowledge to improve the assumptions(inductive bias) of the model, 2) scalability to large datasets, 3) improved interpretability. We show how the EVGP model can be used to learn system dynamics using basic Newtonian mechanics as prior knowledge. We demonstrate how the addition of prior domain-knowledge to data-driven models outperforms purely data-driven models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.