Emergent Mind

Last-iterate convergence rates for min-max optimization

(1906.02027)
Published Jun 5, 2019 in math.OC , cs.GT , cs.LG , and stat.ML

Abstract

While classic work in convex-concave min-max optimization relies on average-iterate convergence results, the emergence of nonconvex applications such as training Generative Adversarial Networks has led to renewed interest in last-iterate convergence guarantees. Proving last-iterate convergence is challenging because many natural algorithms, such as Simultaneous Gradient Descent/Ascent, provably diverge or cycle even in simple convex-concave min-max settings, and previous work on global last-iterate convergence rates has been limited to the bilinear and convex-strongly concave settings. In this work, we show that the Hamiltonian Gradient Descent (HGD) algorithm achieves linear convergence in a variety of more general settings, including convex-concave problems that satisfy a "sufficiently bilinear" condition. We also prove similar convergence rates for the Consensus Optimization (CO) algorithm of [MNG17] for some parameter settings of CO.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.