Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Towards Document Image Quality Assessment: A Text Line Based Framework and A Synthetic Text Line Image Dataset (1906.01907v1)

Published 5 Jun 2019 in cs.CV

Abstract: Since the low quality of document images will greatly undermine the chances of success in automatic text recognition and analysis, it is necessary to assess the quality of document images uploaded in online business process, so as to reject those images of low quality. In this paper, we attempt to achieve document image quality assessment and our contributions are twofold. Firstly, since document image quality assessment is more interested in text, we propose a text line based framework to estimate document image quality, which is composed of three stages: text line detection, text line quality prediction, and overall quality assessment. Text line detection aims to find potential text lines with a detector. In the text line quality prediction stage, the quality score is computed for each text line with a CNN-based prediction model. The overall quality of document images is finally assessed with the ensemble of all text line quality. Secondly, to train the prediction model, a large-scale dataset, comprising 52,094 text line images, is synthesized with diverse attributes. For each text line image, a quality label is computed with a piece-wise function. To demonstrate the effectiveness of the proposed framework, comprehensive experiments are evaluated on two popular document image quality assessment benchmarks. Our framework significantly outperforms the state-of-the-art methods by large margins on the large and complicated dataset.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.