Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Scalable Generative Models for Graphs with Graph Attention Mechanism (1906.01861v2)

Published 5 Jun 2019 in cs.LG and stat.ML

Abstract: Graphs are ubiquitous real-world data structures, and generative models that approximate distributions over graphs and derive new samples from them have significant importance. Among the known challenges in graph generation tasks, scalability handling of large graphs and datasets is one of the most important for practical applications. Recently, an increasing number of graph generative models have been proposed and have demonstrated impressive results. However, scalability is still an unresolved problem due to the complex generation process or difficulty in training parallelization. In this paper, we first define scalability from three different perspectives: number of nodes, data, and node/edge labels. Then, we propose GRAM, a generative model for graphs that is scalable in all three contexts, especially in training. We aim to achieve scalability by employing a novel graph attention mechanism, formulating the likelihood of graphs in a simple and general manner. Also, we apply two techniques to reduce computational complexity. Furthermore, we construct a unified and non-domain-specific evaluation metric in node/edge-labeled graph generation tasks by combining a graph kernel and Maximum Mean Discrepancy. Our experiments on synthetic and real-world graphs demonstrated the scalability of our models and their superior performance compared with baseline methods.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.