Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Confidence Regions in Wasserstein Distributionally Robust Estimation (1906.01614v4)

Published 4 Jun 2019 in math.ST, math.OC, stat.ML, and stat.TH

Abstract: Wasserstein distributionally robust optimization estimators are obtained as solutions of min-max problems in which the statistician selects a parameter minimizing the worst-case loss among all probability models within a certain distance (in a Wasserstein sense) from the underlying empirical measure. While motivated by the need to identify optimal model parameters or decision choices that are robust to model misspecification, these distributionally robust estimators recover a wide range of regularized estimators, including square-root lasso and support vector machines, among others, as particular cases. This paper studies the asymptotic normality of these distributionally robust estimators as well as the properties of an optimal (in a suitable sense) confidence region induced by the Wasserstein distributionally robust optimization formulation. In addition, key properties of min-max distributionally robust optimization problems are also studied, for example, we show that distributionally robust estimators regularize the loss based on its derivative and we also derive general sufficient conditions which show the equivalence between the min-max distributionally robust optimization problem and the corresponding max-min formulation.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.