Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 209 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Intrinsic Robustness of Stochastic Bandits to Strategic Manipulation (1906.01528v2)

Published 4 Jun 2019 in cs.LG, cs.AI, cs.GT, and stat.ML

Abstract: Motivated by economic applications such as recommender systems, we study the behavior of stochastic bandits algorithms under \emph{strategic behavior} conducted by rational actors, i.e., the arms. Each arm is a \emph{self-interested} strategic player who can modify its own reward whenever pulled, subject to a cross-period budget constraint, in order to maximize its own expected number of times of being pulled. We analyze the robustness of three popular bandit algorithms: UCB, $\varepsilon$-Greedy, and Thompson Sampling. We prove that all three algorithms achieve a regret upper bound $\mathcal{O}(\max { B, K\ln T})$ where $B$ is the total budget across arms, $K$ is the total number of arms and $T$ is length of the time horizon. This regret guarantee holds under \emph{arbitrary adaptive} manipulation strategy of arms. Our second set of main results shows that this regret bound is \emph{tight} -- in fact for UCB it is tight even when we restrict the arms' manipulation strategies to form a \emph{Nash equilibrium}. The lower bound makes use of a simple manipulation strategy, the same for all three algorithms, yielding a bound of $\Omega(\max { B, K\ln T})$. Our results illustrate the robustness of classic bandits algorithms against strategic manipulations as long as $B=o(T)$.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.