Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Options as responses: Grounding behavioural hierarchies in multi-agent RL (1906.01470v3)

Published 4 Jun 2019 in cs.LG, cs.AI, cs.MA, cs.NE, and stat.ML

Abstract: This paper investigates generalisation in multi-agent games, where the generality of the agent can be evaluated by playing against opponents it hasn't seen during training. We propose two new games with concealed information and complex, non-transitive reward structure (think rock/paper/scissors). It turns out that most current deep reinforcement learning methods fail to efficiently explore the strategy space, thus learning policies that generalise poorly to unseen opponents. We then propose a novel hierarchical agent architecture, where the hierarchy is grounded in the game-theoretic structure of the game -- the top level chooses strategic responses to opponents, while the low level implements them into policy over primitive actions. This grounding facilitates credit assignment across the levels of hierarchy. Our experiments show that the proposed hierarchical agent is capable of generalisation to unseen opponents, while conventional baselines fail to generalise whatsoever.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube