Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Algorithmically generating new algebraic features of polynomial systems for machine learning (1906.01455v1)

Published 3 Jun 2019 in cs.SC and cs.LG

Abstract: There are a variety of choices to be made in both computer algebra systems (CASs) and satisfiability modulo theory (SMT) solvers which can impact performance without affecting mathematical correctness. Such choices are candidates for ML approaches, however, there are difficulties in applying standard ML techniques, such as the efficient identification of ML features from input data which is typically a polynomial system. Our focus is selecting the variable ordering for cylindrical algebraic decomposition (CAD), an important algorithm implemented in several CASs, and now also SMT-solvers. We created a framework to describe all the previously identified ML features for the problem and then enumerated all options in this framework to automatically generation many more features. We validate the usefulness of these with an experiment which shows that an ML choice for CAD variable ordering is superior to those made by human created heuristics, and further improved with these additional features. We expect that this technique of feature generation could be useful for other choices related to CAD, or even choices for other algorithms with polynomial systems for input.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.