Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Hypothesis-Driven Skill Discovery for Hierarchical Deep Reinforcement Learning (1906.01408v3)

Published 27 May 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Deep reinforcement learning (DRL) is capable of learning high-performing policies on a variety of complex high-dimensional tasks, ranging from video games to robotic manipulation. However, standard DRL methods often suffer from poor sample efficiency, partially because they aim to be entirely problem-agnostic. In this work, we introduce a novel approach to exploration and hierarchical skill learning that derives its sample efficiency from intuitive assumptions it makes about the behavior of objects both in the physical world and simulations which mimic physics. Specifically, we propose the Hypothesis Proposal and Evaluation (HyPE) algorithm, which discovers objects from raw pixel data, generates hypotheses about the controllability of observed changes in object state, and learns a hierarchy of skills to test these hypotheses. We demonstrate that HyPE can dramatically improve the sample efficiency of policy learning in two different domains: a simulated robotic block-pushing domain, and a popular benchmark task: Breakout. In these domains, HyPE learns high-scoring policies an order of magnitude faster than several state-of-the-art reinforcement learning methods.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.