Papers
Topics
Authors
Recent
2000 character limit reached

Hypothesis-Driven Skill Discovery for Hierarchical Deep Reinforcement Learning (1906.01408v3)

Published 27 May 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Deep reinforcement learning (DRL) is capable of learning high-performing policies on a variety of complex high-dimensional tasks, ranging from video games to robotic manipulation. However, standard DRL methods often suffer from poor sample efficiency, partially because they aim to be entirely problem-agnostic. In this work, we introduce a novel approach to exploration and hierarchical skill learning that derives its sample efficiency from intuitive assumptions it makes about the behavior of objects both in the physical world and simulations which mimic physics. Specifically, we propose the Hypothesis Proposal and Evaluation (HyPE) algorithm, which discovers objects from raw pixel data, generates hypotheses about the controllability of observed changes in object state, and learns a hierarchy of skills to test these hypotheses. We demonstrate that HyPE can dramatically improve the sample efficiency of policy learning in two different domains: a simulated robotic block-pushing domain, and a popular benchmark task: Breakout. In these domains, HyPE learns high-scoring policies an order of magnitude faster than several state-of-the-art reinforcement learning methods.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.