Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

State-aware Re-identification Feature for Multi-target Multi-camera Tracking (1906.01357v1)

Published 4 Jun 2019 in cs.CV

Abstract: Multi-target Multi-camera Tracking (MTMCT) aims to extract the trajectories from videos captured by a set of cameras. Recently, the tracking performance of MTMCT is significantly enhanced with the employment of re-identification (Re-ID) model. However, the appearance feature usually becomes unreliable due to the occlusion and orientation variance of the targets. Directly applying Re-ID model in MTMCT will encounter the problem of identity switches (IDS) and tracklet fragment caused by occlusion. To solve these problems, we propose a novel tracking framework in this paper. In this framework, the occlusion status and orientation information are utilized in Re-ID model with human pose information considered. In addition, the tracklet association using the proposed fused tracking feature is adopted to handle the fragment problem. The proposed tracker achieves 81.3\% IDF1 on the multiple-camera hard sequence, which outperforms all other reference methods by a large margin.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.