Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Are we there yet? Encoder-decoder neural networks as cognitive models of English past tense inflection (1906.01280v1)

Published 4 Jun 2019 in cs.CL

Abstract: The cognitive mechanisms needed to account for the English past tense have long been a subject of debate in linguistics and cognitive science. Neural network models were proposed early on, but were shown to have clear flaws. Recently, however, Kirov and Cotterell (2018) showed that modern encoder-decoder (ED) models overcome many of these flaws. They also presented evidence that ED models demonstrate humanlike performance in a nonce-word task. Here, we look more closely at the behaviour of their model in this task. We find that (1) the model exhibits instability across multiple simulations in terms of its correlation with human data, and (2) even when results are aggregated across simulations (treating each simulation as an individual human participant), the fit to the human data is not strong---worse than an older rule-based model. These findings hold up through several alternative training regimes and evaluation measures. Although other neural architectures might do better, we conclude that there is still insufficient evidence to claim that neural nets are a good cognitive model for this task.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.