Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convergence of Learning Dynamics in Stackelberg Games (1906.01217v3)

Published 4 Jun 2019 in cs.GT, cs.LG, cs.SY, math.OC, and eess.SY

Abstract: This paper investigates the convergence of learning dynamics in Stackelberg games. In the class of games we consider, there is a hierarchical game being played between a leader and a follower with continuous action spaces. We establish a number of connections between the Nash and Stackelberg equilibrium concepts and characterize conditions under which attracting critical points of simultaneous gradient descent are Stackelberg equilibria in zero-sum games. Moreover, we show that the only stable critical points of the Stackelberg gradient dynamics are Stackelberg equilibria in zero-sum games. Using this insight, we develop a gradient-based update for the leader while the follower employs a best response strategy for which each stable critical point is guaranteed to be a Stackelberg equilibrium in zero-sum games. As a result, the learning rule provably converges to a Stackelberg equilibria given an initialization in the region of attraction of a stable critical point. We then consider a follower employing a gradient-play update rule instead of a best response strategy and propose a two-timescale algorithm with similar asymptotic convergence guarantees. For this algorithm, we also provide finite-time high probability bounds for local convergence to a neighborhood of a stable Stackelberg equilibrium in general-sum games. Finally, we present extensive numerical results that validate our theory, provide insights into the optimization landscape of generative adversarial networks, and demonstrate that the learning dynamics we propose can effectively train generative adversarial networks.

Citations (93)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.