Papers
Topics
Authors
Recent
2000 character limit reached

Depth-Aware Arbitrary Style Transfer Using Instance Normalization (1906.01123v2)

Published 3 Jun 2019 in cs.CV and eess.IV

Abstract: Style transfer is the process of rendering one image with some content in the style of another image, representing the style. Recent studies of Liu et al. (2017) show that traditional style transfer methods of Gatys et al. (2016) and Johnson et al. (2016) fail to reproduce the depth of the content image, which is critical for human perception. They suggest to preserve the depth map by additional regularizer in the optimized loss function, forcing preservation of the depth map. However these traditional methods are either computationally inefficient or require training a separate neural network for each style. AdaIN method of Huang et al. (2017) allows efficient transferring of arbitrary style without training a separate model but is not able to reproduce the depth map of the content image. We propose an extension to this method, allowing depth map preservation by applying variable stylization strength. Qualitative analysis and results of user evaluation study indicate that the proposed method provides better stylizations, compared to the original AdaIN style transfer method.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.