Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mining YouTube - A dataset for learning fine-grained action concepts from webly supervised video data (1906.01012v1)

Published 3 Jun 2019 in cs.CV

Abstract: Action recognition is so far mainly focusing on the problem of classification of hand selected preclipped actions and reaching impressive results in this field. But with the performance even ceiling on current datasets, it also appears that the next steps in the field will have to go beyond this fully supervised classification. One way to overcome those problems is to move towards less restricted scenarios. In this context we present a large-scale real-world dataset designed to evaluate learning techniques for human action recognition beyond hand-crafted datasets. To this end we put the process of collecting data on its feet again and start with the annotation of a test set of 250 cooking videos. The training data is then gathered by searching for the respective annotated classes within the subtitles of freely available videos. The uniqueness of the dataset is attributed to the fact that the whole process of collecting the data and training does not involve any human intervention. To address the problem of semantic inconsistencies that arise with this kind of training data, we further propose a semantical hierarchical structure for the mined classes.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.