Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

NeuralVis: Visualizing and Interpreting Deep Learning Models (1906.00690v1)

Published 3 Jun 2019 in cs.SE

Abstract: Deep Neural Network(DNN) techniques have been prevalent in software engineering. They are employed to faciliatate various software engineering tasks and embedded into many software applications. However, analyzing and understanding their behaviors is a difficult task for software engineers. In this paper, to support software engineers in visualizing and interpreting deep learning models, we present NeuralVis, an instance-based visualization tool for DNN. NeuralVis is designed for: 1). visualizing the structure of DNN models, i.e., components, layers, as well as connections; 2). visualizing the data transformation process; 3). integrating existing adversarial attack algorithms for test input generation; 4). comparing intermediate outputs of different instances to guide the test input generation; To demonstrate the effectiveness of NeuralVis, we conduct an user study involving ten participants on two classic DNN models, i.e., LeNet and VGG-12. The result shows NeuralVis can assist developers in identifying the critical features that determines the prediction results. Video: https://youtu.be/hRxCovrOZFI

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.