Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Closed-form Solution to Universal Style Transfer (1906.00668v2)

Published 3 Jun 2019 in cs.CV and eess.IV

Abstract: Universal style transfer tries to explicitly minimize the losses in feature space, thus it does not require training on any pre-defined styles. It usually uses different layers of VGG network as the encoders and trains several decoders to invert the features into images. Therefore, the effect of style transfer is achieved by feature transform. Although plenty of methods have been proposed, a theoretical analysis of feature transform is still missing. In this paper, we first propose a novel interpretation by treating it as the optimal transport problem. Then, we demonstrate the relations of our formulation with former works like Adaptive Instance Normalization (AdaIN) and Whitening and Coloring Transform (WCT). Finally, we derive a closed-form solution named Optimal Style Transfer (OST) under our formulation by additionally considering the content loss of Gatys. Comparatively, our solution can preserve better structure and achieve visually pleasing results. It is simple yet effective and we demonstrate its advantages both quantitatively and qualitatively. Besides, we hope our theoretical analysis can inspire future works in neural style transfer. Code is available at https://github.com/lu-m13/OptimalStyleTransfer.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube