Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Massive Styles Transfer with Limited Labeled Data (1906.00580v1)

Published 3 Jun 2019 in cs.CL, cs.AI, and cs.MA

Abstract: Language style transfer has attracted more and more attention in the past few years. Recent researches focus on improving neural models targeting at transferring from one style to the other with labeled data. However, transferring across multiple styles is often very useful in real-life applications. Previous researches of language style transfer have two main deficiencies: dependency on massive labeled data and neglect of mutual influence among different style transfer tasks. In this paper, we propose a multi-agent style transfer system (MAST) for addressing multiple style transfer tasks with limited labeled data, by leveraging abundant unlabeled data and the mutual benefit among the multiple styles. A style transfer agent in our system not only learns from unlabeled data by using techniques like denoising auto-encoder and back-translation, but also learns to cooperate with other style transfer agents in a self-organization manner. We conduct our experiments by simulating a set of real-world style transfer tasks with multiple versions of the Bible. Our model significantly outperforms the other competitive methods. Extensive results and analysis further verify the efficacy of our proposed system.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com