Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of Traffic Lights on Trajectory Forecasting of Human-driven Vehicles Near Signalized Intersections (1906.00486v4)

Published 2 Jun 2019 in cs.RO

Abstract: Forecasting trajectories of human-driven vehicles is a crucial problem in autonomous driving. Trajectory forecasting in the urban area is particularly hard due to complex interactions with cars and pedestrians, and traffic lights (TLs). Unlike the former that has been widely studied, the impact of TLs on the trajectory prediction has been rarely discussed. In this work, we first identify the less studied, perhaps overlooked impact of TLs. Second, we present a novel resolution that is mindful of the impact, inspired by the fact that human drives differently depending on signal phase (green, yellow, red) and timing (elapsed time). Central to the proposed approach is Human Policy Models which model how drivers react to various states of TLs by mapping a sequence of states of vehicles and TLs to a subsequent action (acceleration) of the vehicle. We then combine the Human Policy Models with a known transition function (system dynamics) to conduct a sequential prediction; thus our approach is viewed as Behavior Cloning. One novelty of our approach is the use of vehicle-to-infrastructure communications to obtain the future states of TLs. We demonstrate the impact of TL and the proposed approach using an ablation study for longitudinal trajectory forecasting tasks on real-world driving data recorded near a signalized intersection. Finally, we propose probabilistic (generative) Human Policy Models which provide probabilistic contexts and capture competing policies, e.g., pass or stop in the yellow-light dilemma zone.

Citations (4)

Summary

We haven't generated a summary for this paper yet.