Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Linear Model-Predictive Controller (LMPC) for Building's Heating Ventilation and Air Conditioning (HVAC) System (1906.00352v1)

Published 2 Jun 2019 in cs.SY

Abstract: Model predictive control (MPC) is a widely used technique for temperature set-point tracking and energy optimization of Heating Ventilation and Air Conditioning (HVAC) systems in buildings. Unfortunately, a nonlinear thermal building model leads to a computationally expensive nonlinear MPC problem that is not suitable for real-time control and optimization. This paper presents a novel approximate linearized model for building's thermal dynamics and the HVAC system power consumption that leads to a computationally efficient linear model predictive controller (LMPC) for the buildings' HVAC systems. We employ feedback linearization technique to obtain an equivalent linearized model for the nonlinear thermal building dynamics and use constraint mapping approach to obtain a linearized formulation for new control variables. Next, using piecewise linearization, we obtain a linearized analytical model for the HVAC system power consumption. The proposed LMPC technique is validated using multiple simulation case studies. We demonstrate that the proposed LMPC technique is not only computationally efficient but also accurately approximates the nonlinear optimal control decisions.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube