Papers
Topics
Authors
Recent
2000 character limit reached

Finite difference/spectral approximations for the two-dimensional time Caputo-Fabrizio fractional diffusion equation (1906.00328v3)

Published 2 Jun 2019 in math.NA and cs.NA

Abstract: The main contribution of this work is to construct and analyze stable and high order schemes to efficiently solve the two-dimensional time Caputo-Fabrizio fractional diffusion equation. Based on a third-order finite difference method in time and spectral methods in space, the proposed scheme is unconditionally stable and has the global truncation error $\mathcal{O}(\tau3+N{-m})$, where $\tau$, $N$ and $m$ are the time step size, polynomial degree and regularity in the space variable of the exact solution, respectively. It should be noted that the global truncation error $\mathcal{O}(\tau2+N{-m})$ is well established in [ Li, Lv and Xu, {\em Numer. Methods Partial Differ. Equ}. (2019)]. Finally, some numerical experiments are carried out to verify the theoretical analysis. To the best of our knowledge, this is the first proof for the stability of the third-order scheme for the Caputo-Fabrizio fractional operator.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.