Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Approximate degree, secret sharing, and concentration phenomena (1906.00326v1)

Published 2 Jun 2019 in cs.CC

Abstract: The $\epsilon$-approximate degree $deg_\epsilon(f)$ of a Boolean function $f$ is the least degree of a real-valued polynomial that approximates $f$ pointwise to error $\epsilon$. The approximate degree of $f$ is at least $k$ iff there exists a pair of probability distributions, also known as a dual polynomial, that are perfectly $k$-wise indistinguishable, but are distinguishable by $f$ with advantage $1 - \epsilon$. Our contributions are: We give a simple new construction of a dual polynomial for the AND function, certifying that $deg_\epsilon(f) \geq \Omega(\sqrt{n \log 1/\epsilon})$. This construction is the first to extend to the notion of weighted degree, and yields the first explicit certificate that the $1/3$-approximate degree of any read-once DNF is $\Omega(\sqrt{n})$. We show that any pair of symmetric distributions on $n$-bit strings that are perfectly $k$-wise indistinguishable are also statistically $K$-wise indistinguishable with error at most $K{3/2} \cdot \exp(-\Omega(k2/K))$ for all $k < K < n/64$. This implies that any symmetric function $f$ is a reconstruction function with constant advantage for a ramp secret sharing scheme that is secure against size-$K$ coalitions with statistical error $K{3/2} \exp(-\Omega(deg_{1/3}(f)2/K))$ for all values of $K$ up to $n/64$ simultaneously. Previous secret sharing schemes required that $K$ be determined in advance, and only worked for $f=$ AND. Our analyses draw new connections between approximate degree and concentration phenomena. As a corollary, we show that for any $d < n/64$, any degree $d$ polynomial approximating a symmetric function $f$ to error $1/3$ must have $\ell_1$-norm at least $K{-3/2} \exp({\Omega(deg_{1/3}(f)2/d)})$, which we also show to be tight for any $d > deg_{1/3}(f)$. These upper and lower bounds were also previously only known in the case $f=$ AND.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.