Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Estimation of distributions via multilevel Monte Carlo with stratified sampling (1906.00126v2)

Published 1 Jun 2019 in math.NA and cs.NA

Abstract: We design and implement a novel algorithm for computing a multilevel Monte Carlo (MLMC) estimator of the cumulative distribution function of a quantity of interest in problems with random input parameters or initial conditions. Our approach combines a standard MLMC method with stratified sampling by replacing standard Monte Carlo at each level with stratified Monte Carlo with proportional allocation. We show that the resulting stratified MLMC algorithm is more efficient than its standard MLMC counterpart, due to the reduction in variance at each level provided by the stratification of the random parameter's domain. A smoothing approximation for the indicator function based on kernel density estimation yields a more efficient algorithm compared to the typically used polynomial smoothing. The difference in computational cost between the smoothing methods depends on the required error tolerance.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.