Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Emotional Embeddings: Refining Word Embeddings to Capture Emotional Content of Words (1906.00112v2)

Published 31 May 2019 in cs.CL and cs.IR

Abstract: Word embeddings are one of the most useful tools in any modern natural language processing expert's toolkit. They contain various types of information about each word which makes them the best way to represent the terms in any NLP task. But there are some types of information that cannot be learned by these models. Emotional information of words are one of those. In this paper, we present an approach to incorporate emotional information of words into these models. We accomplish this by adding a secondary training stage which uses an emotional lexicon and a psychological model of basic emotions. We show that fitting an emotional model into pre-trained word vectors can increase the performance of these models in emotional similarity metrics. Retrained models perform better than their original counterparts from 13% improvement for Word2Vec model, to 29% for GloVe vectors. This is the first such model presented in the literature, and although preliminary, these emotion sensitive models can open the way to increase performance in variety of emotion detection techniques.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.