Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Diversity-Inducing Policy Gradient: Using Maximum Mean Discrepancy to Find a Set of Diverse Policies (1906.00088v1)

Published 31 May 2019 in cs.LG and stat.ML

Abstract: Standard reinforcement learning methods aim to master one way of solving a task whereas there may exist multiple near-optimal policies. Being able to identify this collection of near-optimal policies can allow a domain expert to efficiently explore the space of reasonable solutions. Unfortunately, existing approaches that quantify uncertainty over policies are not ultimately relevant to finding policies with qualitatively distinct behaviors. In this work, we formalize the difference between policies as a difference between the distribution of trajectories induced by each policy, which encourages diversity with respect to both state visitation and action choices. We derive a gradient-based optimization technique that can be combined with existing policy gradient methods to now identify diverse collections of well-performing policies. We demonstrate our approach on benchmarks and a healthcare task.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.