Emergent Mind

Abstract

This article provides, through theoretical analysis, an in-depth understanding of the classification performance of the empirical risk minimization framework, in both ridge-regularized and unregularized cases, when high dimensional data are considered. Focusing on the fundamental problem of separating a two-class Gaussian mixture, the proposed analysis allows for a precise prediction of the classification error for a set of numerous data vectors $\mathbf{x} \in \mathbb Rp$ of sufficiently large dimension $p$. This precise error depends on the loss function, the number of training samples, and the statistics of the mixture data model. It is shown to hold beyond Gaussian distribution under some additional non-sparsity condition of the data statistics. Building upon this quantitative error analysis, we identify the simple square loss as the optimal choice for high dimensional classification in both ridge-regularized and unregularized cases, regardless of the number of training samples.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.