Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Approximate Cross-Validation in High Dimensions with Guarantees (1905.13657v4)

Published 31 May 2019 in stat.ML, cs.LG, and stat.ME

Abstract: Leave-one-out cross-validation (LOOCV) can be particularly accurate among cross-validation (CV) variants for machine learning assessment tasks -- e.g., assessing methods' error or variability. But it is expensive to re-fit a model $N$ times for a dataset of size $N$. Previous work has shown that approximations to LOOCV can be both fast and accurate -- when the unknown parameter is of small, fixed dimension. But these approximations incur a running time roughly cubic in dimension -- and we show that, besides computational issues, their accuracy dramatically deteriorates in high dimensions. Authors have suggested many potential and seemingly intuitive solutions, but these methods have not yet been systematically evaluated or compared. We find that all but one perform so poorly as to be unusable for approximating LOOCV. Crucially, though, we are able to show, both empirically and theoretically, that one approximation can perform well in high dimensions -- in cases where the high-dimensional parameter exhibits sparsity. Under interpretable assumptions, our theory demonstrates that the problem can be reduced to working within an empirically recovered (small) support. This procedure is straightforward to implement, and we prove that its running time and error depend on the (small) support size even when the full parameter dimension is large.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube