Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Time Series Anomaly Detection Using Convolutional Neural Networks and Transfer Learning (1905.13628v1)

Published 31 May 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Time series anomaly detection plays a critical role in automated monitoring systems. Most previous deep learning efforts related to time series anomaly detection were based on recurrent neural networks (RNN). In this paper, we propose a time series segmentation approach based on convolutional neural networks (CNN) for anomaly detection. Moreover, we propose a transfer learning framework that pretrains a model on a large-scale synthetic univariate time series data set and then fine-tunes its weights on small-scale, univariate or multivariate data sets with previously unseen classes of anomalies. For the multivariate case, we introduce a novel network architecture. The approach was tested on multiple synthetic and real data sets successfully.

Citations (116)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)