Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exact sampling of determinantal point processes with sublinear time preprocessing (1905.13476v2)

Published 31 May 2019 in cs.LG and stat.ML

Abstract: We study the complexity of sampling from a distribution over all index subsets of the set ${1,...,n}$ with the probability of a subset $S$ proportional to the determinant of the submatrix $\mathbf{L}_S$ of some $n\times n$ p.s.d. matrix $\mathbf{L}$, where $\mathbf{L}_S$ corresponds to the entries of $\mathbf{L}$ indexed by $S$. Known as a determinantal point process, this distribution is used in machine learning to induce diversity in subset selection. In practice, we often wish to sample multiple subsets $S$ with small expected size $k = E[|S|] \ll n$ from a very large matrix $\mathbf{L}$, so it is important to minimize the preprocessing cost of the procedure (performed once) as well as the sampling cost (performed repeatedly). For this purpose, we propose a new algorithm which, given access to $\mathbf{L}$, samples exactly from a determinantal point process while satisfying the following two properties: (1) its preprocessing cost is $n \cdot \text{poly}(k)$, i.e., sublinear in the size of $\mathbf{L}$, and (2) its sampling cost is $\text{poly}(k)$, i.e., independent of the size of $\mathbf{L}$. Prior to our results, state-of-the-art exact samplers required $O(n3)$ preprocessing time and sampling time linear in $n$ or dependent on the spectral properties of $\mathbf{L}$. We also give a reduction which allows using our algorithm for exact sampling from cardinality constrained determinantal point processes with $n\cdot\text{poly}(k)$ time preprocessing.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.