Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness (1905.13472v2)

Published 31 May 2019 in stat.ML and cs.LG

Abstract: Ensemble approaches for uncertainty estimation have recently been applied to the tasks of misclassification detection, out-of-distribution input detection and adversarial attack detection. Prior Networks have been proposed as an approach to efficiently \emph{emulate} an ensemble of models for classification by parameterising a Dirichlet prior distribution over output distributions. These models have been shown to outperform alternative ensemble approaches, such as Monte-Carlo Dropout, on the task of out-of-distribution input detection. However, scaling Prior Networks to complex datasets with many classes is difficult using the training criteria originally proposed. This paper makes two contributions. First, we show that the appropriate training criterion for Prior Networks is the \emph{reverse} KL-divergence between Dirichlet distributions. This addresses issues in the nature of the training data target distributions, enabling prior networks to be successfully trained on classification tasks with arbitrarily many classes, as well as improving out-of-distribution detection performance. Second, taking advantage of this new training criterion, this paper investigates using Prior Networks to detect adversarial attacks and proposes a generalized form of adversarial training. It is shown that the construction of successful \emph{adaptive} whitebox attacks, which affect the prediction and evade detection, against Prior Networks trained on CIFAR-10 and CIFAR-100 using the proposed approach requires a greater amount of computational effort than against networks defended using standard adversarial training or MC-dropout.

Citations (155)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.