Emergent Mind

PAC-Bayesian Transportation Bound

(1905.13435)
Published May 31, 2019 in stat.ML and cs.LG

Abstract

Empirically, the PAC-Bayesian analysis is known to produce tight risk bounds for practical machine learning algorithms. However, in its naive form, it can only deal with stochastic predictors while such predictors are rarely used and deterministic predictors often performs well in practice. To fill this gap, we develop a new generalization error bound, the PAC-Bayesian transportation bound, unifying the PAC-Bayesian analysis and the chaining method in view of the optimal transportation. It is the first PAC-Bayesian bound that relates the risks of any two predictors according to their distance, and capable of evaluating the cost of de-randomization of stochastic predictors faced with continuous loss functions. As an example, we give an upper bound on the de-randomization cost of spectrally normalized neural networks (NNs) to evaluate how much randomness contributes to the generalization of NNs.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.