Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Attentional Policies for Cross-Context Multi-Agent Reinforcement Learning (1905.13428v1)

Published 31 May 2019 in cs.LG, cs.MA, cs.SY, and stat.ML

Abstract: Many potential applications of reinforcement learning in the real world involve interacting with other agents whose numbers vary over time. We propose new neural policy architectures for these multi-agent problems. In contrast to other methods of training an individual, discrete policy for each agent and then enforcing cooperation through some additional inter-policy mechanism, we follow the spirit of recent work on the power of relational inductive biases in deep networks by learning multi-agent relationships at the policy level via an attentional architecture. In our method, all agents share the same policy, but independently apply it in their own context to aggregate the other agents' state information when selecting their next action. The structure of our architectures allow them to be applied on environments with varying numbers of agents. We demonstrate our architecture on a benchmark multi-agent autonomous vehicle coordination problem, obtaining superior results to a full-knowledge, fully-centralized reference solution, and significantly outperforming it when scaling to large numbers of agents.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.