Papers
Topics
Authors
Recent
2000 character limit reached

Multi-modal Discriminative Model for Vision-and-Language Navigation (1905.13358v1)

Published 31 May 2019 in cs.CL and cs.CV

Abstract: Vision-and-Language Navigation (VLN) is a natural language grounding task where agents have to interpret natural language instructions in the context of visual scenes in a dynamic environment to achieve prescribed navigation goals. Successful agents must have the ability to parse natural language of varying linguistic styles, ground them in potentially unfamiliar scenes, plan and react with ambiguous environmental feedback. Generalization ability is limited by the amount of human annotated data. In particular, \emph{paired} vision-language sequence data is expensive to collect. We develop a discriminator that evaluates how well an instruction explains a given path in VLN task using multi-modal alignment. Our study reveals that only a small fraction of the high-quality augmented data from \citet{Fried:2018:Speaker}, as scored by our discriminator, is useful for training VLN agents with similar performance on previously unseen environments. We also show that a VLN agent warm-started with pre-trained components from the discriminator outperforms the benchmark success rates of 35.5 by 10\% relative measure on previously unseen environments.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.