Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

INFaaS: A Model-less and Managed Inference Serving System (1905.13348v6)

Published 30 May 2019 in cs.DC and cs.LG

Abstract: Despite existing work in machine learning inference serving, ease-of-use and cost efficiency remain challenges at large scales. Developers must manually search through thousands of model-variants -- versions of already-trained models that differ in hardware, resource footprints, latencies, costs, and accuracies -- to meet the diverse application requirements. Since requirements, query load, and applications themselves evolve over time, these decisions need to be made dynamically for each inference query to avoid excessive costs through naive autoscaling. To avoid navigating through the large and complex trade-off space of model-variants, developers often fix a variant across queries, and replicate it when load increases. However, given the diversity across variants and hardware platforms in the cloud, a lack of understanding of the trade-off space can incur significant costs to developers. This paper introduces INFaaS, a managed and model-less system for distributed inference serving, where developers simply specify the performance and accuracy requirements for their applications without needing to specify a specific model-variant for each query. INFaaS generates model-variants, and efficiently navigates the large trade-off space of model-variants on behalf of developers to meet application-specific objectives: (a) for each query, it selects a model, hardware architecture, and model optimizations, (b) it combines VM-level horizontal autoscaling with model-level autoscaling, where multiple, different model-variants are used to serve queries within each machine. By leveraging diverse variants and sharing hardware resources across models, INFaaS achieves 1.3x higher throughput, violates latency objectives 1.6x less often, and saves up to 21.6x in cost (8.5x on average) compared to state-of-the-art inference serving systems on AWS EC2.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.