Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Lightweight Recurrent Network for Sequence Modeling (1905.13324v1)

Published 30 May 2019 in cs.CL

Abstract: Recurrent networks have achieved great success on various sequential tasks with the assistance of complex recurrent units, but suffer from severe computational inefficiency due to weak parallelization. One direction to alleviate this issue is to shift heavy computations outside the recurrence. In this paper, we propose a lightweight recurrent network, or LRN. LRN uses input and forget gates to handle long-range dependencies as well as gradient vanishing and explosion, with all parameter related calculations factored outside the recurrence. The recurrence in LRN only manipulates the weight assigned to each token, tightly connecting LRN with self-attention networks. We apply LRN as a drop-in replacement of existing recurrent units in several neural sequential models. Extensive experiments on six NLP tasks show that LRN yields the best running efficiency with little or no loss in model performance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.