Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Combating the Compounding-Error Problem with a Multi-step Model (1905.13320v1)

Published 30 May 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Model-based reinforcement learning is an appealing framework for creating agents that learn, plan, and act in sequential environments. Model-based algorithms typically involve learning a transition model that takes a state and an action and outputs the next state---a one-step model. This model can be composed with itself to enable predicting multiple steps into the future, but one-step prediction errors can get magnified, leading to unacceptable inaccuracy. This compounding-error problem plagues planning and undermines model-based reinforcement learning. In this paper, we address the compounding-error problem by introducing a multi-step model that directly outputs the outcome of executing a sequence of actions. Novel theoretical and empirical results indicate that the multi-step model is more conducive to efficient value-function estimation, and it yields better action selection compared to the one-step model. These results make a strong case for using multi-step models in the context of model-based reinforcement learning.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.