Emergent Mind

Efficient Covariance Estimation from Temporal Data

(1905.13276)
Published May 30, 2019 in cs.LG and stat.ML

Abstract

Estimating the covariance structure of multivariate time series is a fundamental problem with a wide-range of real-world applications -- from financial modeling to fMRI analysis. Despite significant recent advances, current state-of-the-art methods are still severely limited in terms of scalability, and do not work well in high-dimensional undersampled regimes. In this work we propose a novel method called Temporal Correlation Explanation, or T-CorEx, that (a) has linear time and memory complexity with respect to the number of variables, and can scale to very large temporal datasets that are not tractable with existing methods; (b) gives state-of-the-art results in highly undersampled regimes on both synthetic and real-world datasets; and (c) makes minimal assumptions about the character of the dynamics of the system. T-CorEx optimizes an information-theoretic objective function to learn a latent factor graphical model for each time period and applies two regularization techniques to induce temporal consistency of estimates. We perform extensive evaluation of T-Corex using both synthetic and real-world data and demonstrate that it can be used for detecting sudden changes in the underlying covariance matrix, capturing transient correlations and analyzing extremely high-dimensional complex multivariate time series such as high-resolution fMRI data.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.