Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

New Algorithms for Functional Distributed Constraint Optimization Problems (1905.13275v1)

Published 30 May 2019 in cs.MA

Abstract: The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool to model multi-agent coordination problems that are distributed by nature. The formulation is suitable for problems where variables are discrete and constraint utilities are represented in tabular form. However, many real-world applications have variables that are continuous and tabular forms thus cannot accurately represent constraint utilities. To overcome this limitation, researchers have proposed the Functional DCOP (F-DCOP) model, which are DCOPs with continuous variables. But existing approaches usually come with some restrictions on the form of constraint utilities and are without quality guarantees. Therefore, in this paper, we (i) propose exact algorithms to solve a specific subclass of F-DCOPs; (ii) propose approximation methods with quality guarantees to solve general F-DCOPs; and (iii) empirically show that our algorithms outperform existing state-of-the-art F-DCOP algorithms on randomly generated instances when given the same communication limitations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.