Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

On stochastic gradient Langevin dynamics with dependent data streams: the fully non-convex case (1905.13142v4)

Published 30 May 2019 in math.ST, math.PR, stat.ML, and stat.TH

Abstract: We consider the problem of sampling from a target distribution, which is \emph {not necessarily logconcave}, in the context of empirical risk minimization and stochastic optimization as presented in Raginsky et al. (2017). Non-asymptotic analysis results are established in the $L1$-Wasserstein distance for the behaviour of Stochastic Gradient Langevin Dynamics (SGLD) algorithms. We allow the estimation of gradients to be performed even in the presence of \emph{dependent} data streams. Our convergence estimates are sharper and \emph{uniform} in the number of iterations, in contrast to those in previous studies.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.