Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Bloom Clock (1905.13064v4)

Published 30 May 2019 in cs.DC and cs.DS

Abstract: The bloom clock is a space-efficient, probabilistic data structure designed to determine the partial order of events in highly distributed systems. The bloom clock, like the vector clock, can autonomously detect causality violations by comparing its logical timestamps. Unlike the vector clock, the space complexity of the bloom clock does not depend on the number of nodes in a system. Instead it depends on a set of chosen parameters that determine its confidence interval, i.e. false positive rate. To reduce the space complexity from which the vector clock suffers, the bloom clock uses a 'moving window' in which the partial order of events can be inferred with high confidence. If two clocks are not comparable, the bloom clock can always deduce it, i.e. false negatives are not possible. If two clocks are comparable, the bloom clock can calculate the confidence of that statement, i.e. it can compute the false positive rate between comparable pairs of clocks. By choosing an acceptable threshold for the false positive rate, the bloom clock can properly compare the order of its timestamps, with that of other nodes in a highly accurate and space efficient way.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)