Papers
Topics
Authors
Recent
2000 character limit reached

Quantifying consensus of rankings based on q-support patterns (1905.12966v2)

Published 30 May 2019 in cs.AI

Abstract: Rankings, representing preferences over a set of candidates, are widely used in many information systems, e.g., group decision making and information retrieval. It is of great importance to evaluate the consensus of the obtained rankings from multiple agents. An overall measure of the consensus degree provides an insight into the ranking data. Moreover, it could provide a quantitative indicator for consensus comparison between groups and further improvement of a ranking system. Existing studies are insufficient in assessing the overall consensus of a ranking set. They did not provide an evaluation of the consensus degree of preference patterns in most rankings. In this paper, a novel consensus quantifying approach, without the need for any correlation or distance functions as in existing studies of consensus, is proposed based on a concept of q-support patterns of rankings. The q-support patterns represent the commonality embedded in a set of rankings. A method for detecting outliers in a set of rankings is naturally derived from the proposed consensus quantifying approach. Experimental studies are conducted to demonstrate the effectiveness of the proposed approach.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.