Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Benchmarking Regression Methods: A comparison with CGAN (1905.12868v5)

Published 30 May 2019 in cs.LG and stat.ML

Abstract: In recent years, impressive progress has been made in the design of implicit probabilistic models via Generative Adversarial Networks (GAN) and its extension, the Conditional GAN (CGAN). Excellent solutions have been demonstrated mostly in image processing applications which involve large, continuous output spaces. There is almost no application of these powerful tools to problems having small dimensional output spaces. Regression problems involving the inductive learning of a map, $y=f(x,z)$, $z$ denoting noise, $f:\mathbb{R}n\times \mathbb{R}k \rightarrow \mathbb{R}m$, with $m$ small (e.g., $m=1$ or just a few) is one good case in point. The standard approach to solve regression problems is to probabilistically model the output $y$ as the sum of a mean function $m(x)$ and a noise term $z$; it is also usual to take the noise to be a Gaussian. These are done for convenience sake so that the likelihood of observed data is expressible in closed form. In the real world, on the other hand, stochasticity of the output is usually caused by missing or noisy input variables. Such a real world situation is best represented using an implicit model in which an extra noise vector, $z$ is included with $x$ as input. CGAN is naturally suited to design such implicit models. This paper makes the first step in this direction and compares the existing regression methods with CGAN. We notice however, that the existing methods like mixture density networks (MDN) and XGBoost do quite well compared to CGAN in terms of likelihood and mean absolute error, respectively. Both these methods are comparatively easier to train than CGANs. CGANs need more innovation to have a comparable modeling and ease-of-training with respect to the existing regression solvers. In summary, for modeling uncertainty MDNs are better while XGBoost is better for the cases where accurate prediction is more important.

Citations (12)

Summary

We haven't generated a summary for this paper yet.