CS-R-FCN: Cross-supervised Learning for Large-Scale Object Detection (1905.12863v2)
Abstract: Generic object detection is one of the most fundamental problems in computer vision, yet it is difficult to provide all the bounding-box-level annotations aiming at large-scale object detection for thousands of categories. In this paper, we present a novel cross-supervised learning pipeline for large-scale object detection, denoted as CS-R-FCN. First, we propose to utilize the data flow of image-level annotated images in the fully-supervised two-stage object detection framework, leading to cross-supervised learning combining bounding-box-level annotated data and image-level annotated data. Second, we introduce a semantic aggregation strategy utilizing the relationships among the cross-supervised categories to reduce the unreasonable mutual inhibition effects during the feature learning. Experimental results show that the proposed CS-R-FCN improves the mAP by a large margin compared to previous related works.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.