Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CS-R-FCN: Cross-supervised Learning for Large-Scale Object Detection (1905.12863v2)

Published 30 May 2019 in cs.CV

Abstract: Generic object detection is one of the most fundamental problems in computer vision, yet it is difficult to provide all the bounding-box-level annotations aiming at large-scale object detection for thousands of categories. In this paper, we present a novel cross-supervised learning pipeline for large-scale object detection, denoted as CS-R-FCN. First, we propose to utilize the data flow of image-level annotated images in the fully-supervised two-stage object detection framework, leading to cross-supervised learning combining bounding-box-level annotated data and image-level annotated data. Second, we introduce a semantic aggregation strategy utilizing the relationships among the cross-supervised categories to reduce the unreasonable mutual inhibition effects during the feature learning. Experimental results show that the proposed CS-R-FCN improves the mAP by a large margin compared to previous related works.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.