Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised Model Selection for Variational Disentangled Representation Learning (1905.12614v4)

Published 29 May 2019 in cs.LG and stat.ML

Abstract: Disentangled representations have recently been shown to improve fairness, data efficiency and generalisation in simple supervised and reinforcement learning tasks. To extend the benefits of disentangled representations to more complex domains and practical applications, it is important to enable hyperparameter tuning and model selection of existing unsupervised approaches without requiring access to ground truth attribute labels, which are not available for most datasets. This paper addresses this problem by introducing a simple yet robust and reliable method for unsupervised disentangled model selection. Our approach, Unsupervised Disentanglement Ranking (UDR), leverages the recent theoretical results that explain why variational autoencoders disentangle (Rolinek et al, 2019), to quantify the quality of disentanglement by performing pairwise comparisons between trained model representations. We show that our approach performs comparably to the existing supervised alternatives across 5,400 models from six state of the art unsupervised disentangled representation learning model classes. Furthermore, we show that the ranking produced by our approach correlates well with the final task performance on two different domains.

Citations (74)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube