Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Expected Tight Bounds for Robust Training (1905.12418v5)

Published 28 May 2019 in cs.LG, cs.CR, and stat.ML

Abstract: Training Deep Neural Networks that are robust to norm bounded adversarial attacks remains an elusive problem. While exact and inexact verification-based methods are generally too expensive to train large networks, it was demonstrated that bounded input intervals can be inexpensively propagated from a layer to another through deep networks. This interval bound propagation approach (IBP) not only has improved both robustness and certified accuracy but was the first to be employed on large/deep networks. However, due to the very loose nature of the IBP bounds, the required training procedure is complex and involved. In this paper, we closely examine the bounds of a block of layers composed in the form of Affine-ReLU-Affine. To this end, we propose expected tight bounds (true bounds in expectation), referred to as ETB, which are provably tighter than IBP bounds in expectation. We then extend this result to deeper networks through blockwise propagation and show that we can achieve orders of magnitudes tighter bounds compared to IBP. Furthermore, using a simple standard training procedure, we can achieve impressive robustness-accuracy trade-off on both MNIST and CIFAR10.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.