Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Factorization of the translation kernel for fast rigid image alignment (1905.12317v2)

Published 29 May 2019 in math.NA and cs.NA

Abstract: An important component of many image alignment methods is the calculation of inner products (correlations) between an image of $n\times n$ pixels and another image translated by some shift and rotated by some angle. For robust alignment of an image pair, the number of considered shifts and angles is typically high, thus the inner product calculation becomes a bottleneck. Existing methods, based on fast Fourier transforms (FFTs), compute all such inner products with computational complexity $\mathcal{O}(n3 \log n)$ per image pair, which is reduced to $\mathcal{O}(N n2)$ if only $N$ distinct shifts are needed. We propose to use a factorization of the translation kernel (FTK), an optimal interpolation method which represents images in a Fourier--Bessel basis and uses a rank-$H$ approximation of the translation kernel via an operator singular value decomposition (SVD). Its complexity is $\mathcal{O}(Hn(n + N))$ per image pair. We prove that $H = \mathcal{O}((W + \log(1/\epsilon))2)$, where $2W$ is the magnitude of the maximum desired shift in pixels and $\epsilon$ is the desired accuracy. For fixed $W$ this leads to an acceleration when $N$ is large, such as when sub-pixel shift grids are considered. Finally, we present numerical results in an electron cryomicroscopy application showing speedup factors of $3$-$10$ with respect to the state of the art.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Aaditya Rangan (2 papers)
  2. Marina Spivak (3 papers)
  3. Joakim Andén (22 papers)
  4. Alex Barnett (22 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.