Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Differential Privacy for Multi-armed Bandits: What Is It and What Is Its Cost? (1905.12298v2)

Published 29 May 2019 in cs.LG and stat.ML

Abstract: Based on differential privacy (DP) framework, we introduce and unify privacy definitions for the multi-armed bandit algorithms. We represent the framework with a unified graphical model and use it to connect privacy definitions. We derive and contrast lower bounds on the regret of bandit algorithms satisfying these definitions. We leverage a unified proving technique to achieve all the lower bounds. We show that for all of them, the learner's regret is increased by a multiplicative factor dependent on the privacy level $\epsilon$. We observe that the dependency is weaker when we do not require local differential privacy for the rewards.

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.