Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient EM-Variational Inference for Hawkes Process (1905.12251v2)

Published 29 May 2019 in cs.LG and stat.ML

Abstract: In classical Hawkes process, the baseline intensity and triggering kernel are assumed to be a constant and parametric function respectively, which limits the model flexibility. To generalize it, we present a fully Bayesian nonparametric model, namely Gaussian process modulated Hawkes process and propose an EM-variational inference scheme. In this model, a transformation of Gaussian process is used as a prior on the baseline intensity and triggering kernel. By introducing a latent branching structure, the inference of baseline intensity and triggering kernel is decoupled and the variational inference scheme is embedded into an EM framework naturally. We also provide a series of schemes to accelerate the inference. Results of synthetic and real data experiments show that the underlying baseline intensity and triggering kernel can be recovered without parametric restriction and our Bayesian nonparametric estimation is superior to other state of the arts.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.